Comparative analysis of dayside magnetic reconnection models in global magnetosphere simulations
نویسندگان
چکیده
We test and compare a number of existing models predicting the location of magnetic reconnection at Earth’s dayside magnetopause for various solar wind conditions. We employ robust image processing techniques to determine the locations where each model predicts reconnection to occur. The predictions are then compared to the magnetic separators, the magnetic field lines separating different magnetic topologies. The predictions are tested in distinct high-resolution simulations with interplanetary magnetic field (IMF) clock angles ranging from 30 to 165◦ in global magnetohydrodynamic simulations using the three-dimensional Block Adaptive Tree Solarwind Roe-type Upwind Scheme code with a uniform resistivity, although the described techniques can be generally applied to any self-consistent magnetosphere code. Additional simulations are carried out to test location model dependence on IMF strength and dipole tilt. We find that most of the models match large portions of the magnetic separators when the IMF has a southward component, with the models saying reconnection occurs where the local reconnection rate and reconnection outflow speed are maximized performing best. When the IMF has a northward component, none of the models tested faithfully map the entire magnetic separator, but the maximum magnetic shear model is the best at mapping the separator in the cusp region where reconnection has been observed. Predictions for some models with northward IMF orientations improve after accounting for plasma flow shear parallel to the reconnecting components of the magnetic fields. Implications for observations are discussed.
منابع مشابه
The Solar Wind Interaction with the Earth’s Magnetosphere: A Tutorial
The size of the terrestrial magnetosphere is determined by the balance between the solar wind dynamic pressure and the pressure exerted by the magnetosphere, principally that of its magnetic field. The shape of the magnetosphere is additionally influenced by the drag of the solar wind, or tangential stress, on the magnetosphere. This drag is predominantly caused by the mechanism known as reconn...
متن کاملGlobal MHD simulations of the strongly driven magnetosphere: Modeling of the transpolar potential saturation
[1] When the magnetosphere-ionosphere system is driven strongly by the solar wind, the ionospheric transpolar potential tends to saturate. The global MHD simulations are used to study this phenomenon and, in particular, the role the ionospheric conductance plays in controlling the dayside reconnection and the transpolar potentials. The feedback of the ionospheric conductance enhanced due to a h...
متن کاملA numerical model of the ionospheric signatures of time-varying magnetic reconnection: III. Quasi-instantaneous convection responses in the Cowley–Lockwood paradigm
Using a numerical implementation of the Cowley and Lockwood (1992) model of flow excitation in the magnetosphere–ionosphere (MI) system, we show that both an expanding (on a ∼12-min timescale) and a quasiinstantaneous response in ionospheric convection to the onset of magnetopause reconnection can be accommodated by the Cowley–Lockwood conceptual framework. This model has a key feature of time ...
متن کاملDipole tilt effects on the magnetosphere‐ionosphere convection system during interplanetary magnetic field BY‐dominated periods: MHD modeling
[1] Using numerical magnetohydrodynamic simulations, we examine the dipole tilt effects on the magnetosphere‐ionosphere convection system when the interplanetary magnetic field is oblique northward (BY = 4 nT and BZ = 2 nT). In particular, we clarify the relationship between viscous‐driven convection and reconnection‐driven convection. The azimuthal locations of the two viscous cell centers in ...
متن کاملMESSENGER observations of large dayside flux transfer events: Do they drive Mercurys substorm cycle?
The large-scale dynamic behavior of Mercury’s highly compressedmagnetosphere is predominantly powered by magnetic reconnection, which transfers energy and momentum from the solar wind to the magnetosphere. The contribution of flux transfer events (FTEs) at the daysidemagnetopause to the redistribution of magnetic flux in Mercury’s magnetosphere is assessed with magnetic field data acquired in o...
متن کامل